Total No. of Questions: 6] [Total No. of Printed Pages: 5 **EGS-187** B.E. 6th Semester (CGPA) Elect. and Commun. Engg. (Zero Sem.) Examination - 2018 **DIGITAL SIGNAL PROCESSING** Paper-EL-603 Time: 3 Hours] [Maximum Marks: 60 Note: Attempt all questions. Test, whether the system is linear or not. 4 $y[n] = x[n] cos(w_n)$ (b) Determine the range of value of a and b for which the L.T.I. system with impulse response. $h[n] = \begin{cases} a^n, & n \ge 0 \\ b^n, & n < 0 \end{cases}$ is stable The discrete time system y[n] = ny[n-1](a) $+ x [n], n \ge 0$ is at rest [i.e. y (-1) = 0] Test whether the system is L.T.I. (1) **EGS-187**

Roll No.

Turn Over

- (b) Derive the equation for convolution sum as applicable to discrete time L.T.I. systems.
- 2. (a) Find the z-transform of the following: 4
 - (i) n^2e^{-2n}
- (ii) naⁿu(n)
- (b) Prove the properties of time-shifting and time reversing as applicable to z-transform.

or and the same

(a) Determine inverse z-transform of 4

$$x[z] = \frac{z}{3z^2 - 4z + 1}$$

(b) Find the z-transform using residue method of the signal:

$$x[z] = \frac{1}{(z-1)(z-3)}$$

3. (a) Compare direct form I and direct form II realisation of IIR system.

EGS-187

(2)

(b) Draw the block diagram representation of the direct form I and II realisation of the system with the following transfer function: 6

$$H[z] = \frac{z^{-1} - 3z^{-2}}{(10 - z^{-1})(1 + 0.5z^{-1} + 0.5z^{-2})}$$

or

(a) Develop a canonic direct form reaslisation of the transfer function.

$$H[z] = \frac{3+5z^{-1}-8z^{-2}+4z^{-5}}{2+3z^{-1}+6z^{-3}}$$

and determine its transpose configuration.6

- (b) Explain block diagram representation of recursive and non-recursive systems. 4
- 4. (a) Prove that the multiplication of two DET's is equivalent to the circular convolution of their sequences in time domain.
 - (b) State and prove the following properties of DFT:
- (i) Even and odd properties
 EGS-187 (3) Trun Over

(ii)	Circular	frequenc	y shift
	i digo i	This is	**************************************

lanut m**or**

- (a) How DFT can be used to perform high speed convolution? Explain giving example. 4
- (b) Compute the DFT of the following finite length sequence of length N, (N is even)

$$x[n] = \begin{cases} 1, & 0 \le n \le \frac{N}{2} - 1 \\ 0, & \frac{N}{2} \le n \le N - 1 \end{cases}$$

- 5. (a) What are the desirable and undesirable features of FIR filters?
 - (b) Convert the analog filter into a digital filter whose system function is 6

H(S) =
$$\frac{S + 0.2}{(S + 0.2)^2 + 9}$$

or

(a) Explain window technique for designing FIR digital filter.

EGS-187

(4)

UITians

- (d) Convert the analog filter with system $function \ H(S) = \frac{S+0.1}{(S+0.1)^2+9} \ into \ a$ digital IIR filter using Bilinear transformation (w, should be $\frac{\pi}{4}$)
- 6. (a) Discuss Bilinear transformation method for designing digital filters.
 - (b) Compute DFT of the sequence $x(n) = \cos \frac{n\pi}{2} \text{ where } N = 4 \text{ using DIF FFT}$ algorithm.

or

- (a) Why filtering is required in DSP.
- (b) Determine H (z) using impulse invariant technique for the analog system function.6

H(S) =
$$\frac{1}{(s+0.5)(s^2+0.5s+2)}$$

EGS-187

(5)